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Abstract: This paper presents the Physics of current near a cylindrical magnetic interface. In the past, several texts and 

papers have focused attention on current lines near rectangular structures near conducting or insulating planes and on magnetic 

fields around solenoids and some other types of current-carrying conductors. This paper explains what happens when a current 

line passes near a cylindrical magnetic interface. The phenomenon of placing a cylinder in a uniform external magnetic field is 

explained. The concept of real image and virtual electric currents is analyzed and discussed. The reciprocal point as image on 

the cylinder is also considered. Also considered and analyzed are phenomena of magnetic force on the cylinder wall and the 

effective dipole moment in the far-field. This research finds applications in the designs of magnetic systems and coils for 

electric generators. 
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1. Introduction 

In this paper, the physics of electric current passing near a 

cylindrical magnetic interface will be considered. Section 

two of this paper outlines the concept of current passing near 

a conducting or insulating plane. Section three considers and 

analyses the effect of an external uniform magnetic field on a 

cylinder placed in it. The effect of line-current passing near 

an insulating or conducting cylinder will be considered in 

Section four. Section five discusses the concept of real image 

and virtual electric currents, while Section six identifies a 

reciprocal point as image on the cylinder. Section seven of 

the paper will discuss the identified homogeneous medium 

and the conducting or insulating walls, while Section eight 

derives the formula for the magnetic force on the wall and 

the effective dipole moment in the far field. In Section nine, 

the similarities and differences between electrostatic and 

magnetostatic fields will be outlined, and the phenomenon of 

“skin effect” and its application will be mentioned. The 

conclusions will be presented in Section ten. 

2. Current Near a Conducting or 

Insulating Plane 

The Maxwell equations for the steady magnetostatic field: 

∇. ��� = 0;                                          (1) 

∇ × 
��� = ��
�                                        (2) 

State that (i) the magnetic induction ��� is divergence free, 

since it is a solenoidal field; (ii) the curl of the magnetic field 
��� equals the electric current density j divided by the speed of 

light in vacuum c. The magnetic field and induction can be 

non-parallel in a crystal; in an isotropic medium they must be 

parallel, specifying the magnetic permeability: 

��� = 
���
;                                     (3) 

��������� = ��� −	
��� = �
 − 1�
��� = �1 −	 ��� ��� = ��
���;		    (4) 
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	�� = 
 − 1                               (5) 

Where: ��������� = ������ !	"#$�% &�� #�; 	�� = ������ !	&'&!�"� ( $ �). 

The magnetic induction and field have the same direction 

in a linear, isotropic material, and thus the magnetic 

permeability is positive: 


	 ≥ 0;	
+ = 1,	                            (6) 

The magnetic permeability is unity in a vacuum, and when 

the magnetic field and induction coincide, the magnetic 

susceptibility and polarization vanish. The magnetic energy 

Em is given by: 

-� = �
. /���. 
���0 = 

. = 12

� = �3���.4��5��6�� = �452��6��2      (7) 

Now, considering an electric current J at a distance “a” 

from a wall, the conjugate magnetic field is given, for 

identical image, by: 


±∗ �9� = :;
.<� =�9 −  ��6� ± �9 +  ��6�	?,           (8) 

which simplifies to: 


@∗ �9� = :;
<� 	 A

�B2@C2�,                          (9) 


6∗ �9� = 6;
<� 	 C

�B2@C2�.                         (10) 

The wall (y=0, z=x) is insulating if the magnetic field is 

normal, that is, the tangential component or real part of 
∗ is 

zero; that is the case for a 
@∗  equal image. Whereas if an 

equal image current corresponds to an insulating wall, the 

opposite image current (for 
6∗ ) leads to a tangential 

magnetic field that specifies the surface electric current 

distribution on the conducting wall: 

D�E� = !
F6	�E, 0� = 6;C <⁄
F2@C2                      (11) 

The surface current is opposite to the original current, peak 

at the closest point, and leads to a total current −H , as in 

equations for the induced electric charge in a conductor. The 

surface electric current arises from boundary condition for a 

zero magnetic field on the other side of a perfect conductor. 

The complex conjugate magnetic force on the boundary is 

minus the force of the image on the line current, and is given 

by: 

I±	∗	 =  
H! J
@∗ −	  
H2L! M 19 −  �N	OBP:C 

=  
H! J±	  
H2L! M 19 −  �N	OBP:C 

=  
H! M± H2L!N 12 � 

= ± :�;2
Q<�2C = −I±                             (12) 

Only the second term on the right hand side of equation (8) 

appears in equation (12) because: (i) the line current does not 

exert a force on itself; (ii) the force on the line-current is 

entirely due to its image. Thus, the line current exerts on the 

insulating or conducting wall a normal repulsive or attractive 

force. Generalizing, to magnetic multipole of moment Pn, the 

complex conjugate magnetic field due to an insulating 
@	�#%	!#�R'!� ��	
6� wall is: 


±	∗	 �S� = :TUV.<� =�9 −  ��6T6� ±	�9 +  ��6T6�?;	     (13) 

This corresponds in the far-field to: 

|S|T@� 	≫ 	�T@�: 
@∗ �S� =  �YTS6T6�;              (14) 


6∗ �S� = −��� + 1� YTL! . �S6T6. 

=  �� + 1� UVZ[.<� . S6T6.;                      (15) 

	YT@� =  2��YT                            (16) 

The induced electric charges are similar to the interface 

electric currents: 

\�E� = !
F6�E, 0� =  �YT2L =�E −  ��6T6� −	�E +  ��6T6�? 
= 6TUV< �E. + �.�6T6�]�^�E +  ��T@�_ (17) 

Where a real dipole moment is taken. Using binomial 

theorem, the complex case is: 

\�E� = −�YTL �E. + �.�6T6�]� `a M� + 1b N � ��cET@�6c
T@�

cPd
e 

= 6TUV< �E. + �.�6T6� ∑ �6��g�T@��!C2gZ[FVi2g
�.j@��!�T6.j�!T/.jPd       (18) 

Since only the odd powers are imaginary. Thus, the 

multipole of order n, at a distance “a” from a conducting 

plane corresponds to an interface electric current distribution; 

its value at the closest point, x=0, is zero for odd n and non-

zero for even n=2m: 

� = 2�: 
D�0� = −�YTL �6.T6.�−1��. �.�@� 

= �−1��@� �.�
< � Y��6.�6�                    (19) 

D�0� = m
6�d�P:TUV.< n�6:C�iVi[6�6:C�iVi[o
∗  

 �YT . �6T6�
2L n�:<�T@�/.� − �6:<�T@��/.o 
= −�YTL . �6T6�& � J�� + 1�L2 O 

= �−1��@�/2� Lp 0Y.� . �6.�6�          (20) 
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3. Cylinder in an External Uniform 

Magnetic Field 

The complex potential of a cylinder of radius “a” in a 

uniform external magnetic 
+ is: 

I�±�ƶ� = −
+ �ƶ ± C2
ƶ �.                        (21) 

The corresponding conjugate magnetic field of the 

cylinder of radius “a” in the uniform external magnetic field 


+ is specified by: 


7
∗ �ƶ� � 
+ �1 7 C²

ƶ²�.                          (22) 

The corresponding scalar potential is given by: 

ɸ�
7 �%, t� � �
+ �% 7 C2

u � . !#&t                 (23) 

The field function is: 

v�
7�%, t� � �
+ �% 7 C2

u � . & �t                (24) 

The polar components of the magnetic field are: 


u
7�%, t� � 
+ �1 7 C2

u2� . !#&t;               (25) 

And 


w
7�%, t� � �
+ �1 ∓ C²

u²� . & �t                (26) 

The above Equations (25, 26) show that: 

i. The upper sign indicates that the cylinder is an 

equipotential and corresponds to an insulator, that is, zero 

tangential magnetic field: 

																															Φ�
@ ��, t� � 0			                          (27) 

 � 
w
@��, t�,	                       (28) 

v�
@��, t� � �2
+�& �t,                    (29) 

Ηu
@��, t� � �2
+ cos t.                    (30) 

(ii) The lower sign indicates that the cylinder is a field line 

corresponding to a conductor, with the nonzero tangential 

magnetic field: 

v�
6��, t� � 0                           (31) 

	� 
u
6��, t�,	                           (32) 

Φ�
6 ��, t� � �2
+�!#&t,                          (33) 

Ηw
6��, t� � �2
+& �t � ~�w�

�                         (34) 

Equation (34) specifies the interface electric currents. 

Thus, an insulating (or conducting) cylinder of radius “a” in 

an external magnetic field vanishes along the axis, and peaks 

in the transverse direction with opposite signs; the total 

current is zero and its moment is horizontal and equal to: 

∮ D�t�.<
d �	RØ � �2
˳!� ∮ & �t	Rt � 0,.<

d       (35) 

∮ ED�t��Rt � �2Η.<
d ˳ca²∮ & �Ø!#&ØRØ � 0.<

d ,     (36) 

∮ )D�t��Rt � �2!�² ∮ & �.<
d

.<
d ²tRt � �2L!H˳a²≡P₁	�37�	

The dipole moment in Eq. (37): 

H₋*(Ƶ)-H˳=-H˳a²/ Ƶ²=P₁/ (2πcƵ²)              (38) 

Where P₁ ≡-2H˳a²c. 

 
Figure 1. Conducting cylinder in a uniform magnetic ( or electric) field. 

The introduction of a conducting cylinder in a uniform 

magnetic (electric) field (Figure 1) implies a distribution of 

surface electric currents (or charges) such that the total 

magnetic (or electric) field is everywhere tangent (or 

orthogonal) to the cylinder, respectively. The positive and 

negative electric currents (or charges) concentrate at opposite 

ends of the cylinder in the direction through the axis 

orthogonal to (or along) the external magnetic (or electric) 

field. The total electric current (or charge) is zero and there is 

dipole moment along the external magnetic (or electric) field, 

respectively. The introduction of a conducting (or insulating) 

cylinder in an external magnetic or electric field is equivalent 

in both cases to a dipole parallel (or antiparallel) to the 

external field, respectively. Besides the preceding analogies 

and differences between the electro-(or magneto-) static field 

due to electric charges (or currents), in the case of a 

conductor: (i) a nearby electric charge induces a distribution 

of surface electric charges and the dielectric displacement is 

zero in interior; (ii) a nearby electric current does not induce 

a distribution of surface electric currents, but such a fictitious 

electric current distribution is needed to match a nonzero (or 

zero) tangential magnetic field outside (or inside), 

respectively. A conducting cylinder in a uniform external 

electric (or magnetic) field (as shown in Fig. 1) has induced 

electric charges (or surface electric currents) along (or 

across) the field, leading to a horizontal dipole moment, 

along the field in both cases. In both cases, there is no force 

and no torque on the cylinder because: 

*The electric (or magnetic) force on the co-located, 
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identical, and opposite electric charges (or current) cancel. 

*The dipole axis is parallel to the uniform external field. 

In the latter case of a conductor, it is possible to add a line-

current along the axis of the cylinder: 

���� = �6��� −	  H2L! $#�9 

= −
+ �9 −	C2
B � −  � ;

.<��$#�S                  (39) 


 ∗ �Ƶ� = 
∗6�Ƶ� − :�
.<�Ƶ = 
˳	�1 − C2

Ƶ2� = � :�
	.<�Ƶ� (40) 

The above preserves the boundary condition {Eq. (32) ≡ 

Eq.(41)}: 


ᵣ	��, Ø� = 0,                               (41) 

D�t� = !
ø��, Ø� = 6�
.<C − 2
˳ sin t;              (42) 

which adds a constant term to the current (42) relative to 

(34). 

4. Line – Current Near an Insulating or 

Conducting Cylinder 

A cylinder of radius “a” placed near a line-current J at a 

distance b corresponds to the complex potential (43) [or 

conjugate magnetic field (44)]; it is specified by the circle 

theorem, viz.: 

I Ƶ = :�
.<��± =$#��Ƶ − (� ± $#�	�C2

Ƶ − (�?         (43) 


@∗ �S� = :;
.<� � �

Ƶ6� ± C²
Ƶ²�6C²Ƶ�                (44) 

On the cylinder, the arguments of the logarithms in 

equation (43) have the same modulus (or opposite phases), 

and thus the same modulus in square brackets is imaginary 

(or real) for the lower (or upper) sign respectively and thus f₋ 

(or f₊) is real (or imaginary). Hence, the cylinder is a field-

line ψ=0 (or equipotential Φ=0), corresponding to a 

conductor (or insulator). 

Thus, a line-current J at a distance b from the center of an 

insulating (or conducting) cylinder of radius “a” has complex 

magneto-static potential (43) and complex conjugate 

magnetic field (44) with upper (or lower) sign, respectively. 

In the conducting case, the corresponding surface electric 

currents are: 

D�t� = !
�6��, t� = �� Lp � =��+�w6C?
=C2@�26.C��+�w?	       (45) 

These are largest (or smallest) in modulus and closest t = 0 (or farthestt = L) from the line-current. 

In both the conductor and insulator cases, the far-field is 

due to the leading order to the electric current alone: 

|Ƶ|²˃˃(²:
±∗ �Ƶ� = :�
�.<�Ƶ� �1 + �²±�²�Ƶ )           (46) 

Because there are two opposite images on the cylinder, we 

have: 

$#� �C²
Ƶ − (� = $#� �6�

Ƶ �Ƶ − C²
� � = log �Ƶ − C²

� � −log Ƶ + log�−(�                     (47) 

These appear as a dipole moment (Eq. 48): 

Y� = H �( ± C²
� �                   (48) 


±	∗ �Ƶ� = :;
.<�Ƶ + :U₁

.<�Ƶ² + � ��²
Ƶᵌ�           (49) 

The second term of Eq. (46) is equivalent to Eq. (49). The 

dipole moment (P₁) is horizontal, and for the conductor (or 

insulator) is the distance from the external current to the 

reciprocal point on the same (or opposite) side of the origin, 

respectively. 

The complex conjugate magnetic force exerted on the 

cylinder by the line-current is minus that due to its image, 

that is, the second term on the right-hand side of Eq. (44) 

evaluated at Ƶ = (: 
I±∗ = :�;

� 	 �±:;C²�
.<����²6C²� = ∓ �;2

�
� ��2�

J�6�2
� O = I±          (50) 

Eq. (50) implies that there is attraction (or repulsion) on a 

conducting (or insulating) cylinder, that is, lower+(or upper-) 

sign in Eq. (50). The force changes sign if the line-current is 

inside the cylinder, so that it is always a force of attraction 

(or repulsion) for a conductor (or insulator), respectively. 

The force (Eq. (50)) involves: 

1. The inverse of the distance from the line-current at b to 

its image at a²/b. 

2. There is a factor (a/b)² smaller for line charge and 

farther by b from the centre of the cylinder of radius a. 

The expression for the force (Eq. (50)), as well as those for 

complex potential (Eq. (43)), conjugate magnetic field (Eq. 

44), their asymptotic forms (Equations (46), (48, 49)), and 

surface electric current (Eq. (45)), apply to a line-current at 

distance, b, from the center of the cylinder of radius a, 

regardless of whether it lies inside b < a or outside b > a. 

5. Real, Image and Virtual Electric 

Currents 

An electric line-current J at a distance b from the centre of 

a cylindrical interface of radius “a” between media of 

magnetic permeability 
�	�#%	
.	) for r > a (or r < a) leads to 

a complex conjugate magnetic field specified by: 

(i) In the medium (r > a) of the line-current J by 

superposition with the image current J
II
 on the circle, we have: 

% < �:	
₁ ∗ �	Ƶ� = :
.<� � ;

Ƶ6� + ;¹C²
Ƶ��Ƶ6C²��         (51) 

% > �: 
 ∗. �Ƶ� = :
.<�

;ᶦᶦ
�Ƶ6��                   (52) 

(ii) In the medium (r > a) without line-current, J, the 
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magnetic field is due to a virtual current H    at the original 

point. The boundary conditions at the interface without 

surface electric current: 

D = 0:	
1	ᵩ��, t� � 
₂ᵩ		��, t�                    (53) 


1	
1%��, t� � 
₂
₂%��, t�                    (54) 

are used to relate the original current J, image current H  and 

virtual current H  . 
The components of the magnetic field on the cylindrical 

interface are: 


%�, 
%.��, t� � �
.<� £;

¤ > ;ᶦC
�¤ᶦ ,

;ᶦᶦ
¤¥ sin v       (55) 


ᵩᵢ, 
ᵩ₂ ��, t� � �
.<� £;

¤ � ;ᶦC
�¤ᶦ ,

;ᶦᶦ
¤ 	¥ cos v      (56) 

Where: 

R=distance from an arbitrary point on the circle to the 

original current at (b, 0); 

§ =distance from an arbitrary point on the circle to the 

reciprocal point at (a²/b, 0); and  

v � ���$�	¨ �©	�©�	%��$	�E &.  

 

Figure 2. Analogy between magnetic field of a line-current. 

There is an analogy between the magnetic (or electric) 

field of a line current (or charge) near a cylindrical (or plane) 

interface between media with distinct magnetic 

permeabilities (or dielectric permittivities), respectively. The 

image system consists of current H  �7H �  at the original 

point (or reciprocal point and center of the cylinder). The 

relation between the original J and image H  , H    currents is 

specified by the continuity of the magnetic field components 

orthogonal (or tangent) to the cylinder, which holds always 

(in the absence of surface electric currents). The extreme 

cases of a conducting (or insulating) cylinder correspond to 

zero 
. � 0  (or infinite 	
. � ∞ ) magnetic permeability of 

the second medium and opposite (or identical) image 

current	H  � �H�H  � H�, respectively. There is a continuous 

variation between these extremes, allowing an attraction 


. � 
�  (or repulsion 	
. � 
� ) of the cylinder by the line 

current, and no force for identical media. 
The physical configuration is shown in Fig. 2. Substituting 

(55-56) in the boundary conditions (53), we get: 

;
¤ � ;ᶦC

�¤ᶦ �
;ᶦᶦ
¤ ,                               (57) 


 �;
¤ > ;ᶦC

�¤ᶦ� � 
₂ �;ᶦᶦ
¤�                               (58) 

The magnetic field 
��� �#%/
���0ᶦᶦ� due to the original J (or 

virtualH  ) line-current (Fig. 3) is orthogonal to the line from 

the original current J to the arbitrary point P on the circle, in 

the positive direction. The magnetic field 
    due to the 

image line-current H  has components due to a line-current H  
(or-H ) at the reciprocal point (or at the center). It can be seen 

that �
�′���������  has a radial (or tangential) component with the 

same (or opposite) sign to 
��� and �
  ������������. 

 
Figure 3. Image at the reciprocal point in a circle. 

The image at the reciprocal point in a circle applies to: (i) 

the electric (magnetic) field of a line charge (current) near a 

cylinder (Figure 2); (ii) the potential flow of a line monopole 

(dipole) near a cylinder. The original (reciprocal) point have 

the property that the ratio of the distance from them at any 

point on the circle 
¤¬

¤ � �
C equals the distance of the original 

point from the center of the circle divided by the radius of the 

circle. this can be checked most readily for 2 points on the 

circle farthest D (closest C) to the reciprocal points 
/C	7	C2 �⁄ 0

��	7C� � � (⁄ . The magnetic fields 
��­	/
��­  0  due to the 

original J (virtual H   ) line-current are orthogonal to the 

position vector from (b, 0) to the circle; the magnetic field H
I
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is the sum of the contributions due to the opposite image 

line-currents 	H �−H �	��	�ℎ�	%�! "%#!�$  point 

(�. (⁄ , 0)[center (0, 0)]. 

6. Reciprocal Point as Image on the 

Cylinder 

In Equations (57, 58), the distance from an arbitrary point (P 

in Figure 3) on the circle (a, t) to the original and virtual (or 

image) currents J, J
II
 (or J

I
) at (b, 0) [or at the reciprocal point 

(a²/b, 0)] is denoted by R (or R
I
) in Eq. (59) [or Eq. (60)]: 

§² ≡ ¯��:∅ − C2
� ¯. = �( − �	!#&∅�. = ��	& �∅�. = �. +(. − 2(�	!#&∅                          (59) 

�§ᶦ�. ≡ ¯��ⁱᶲ − C2
� ¯. = �� cos t − C2

� �. + �� sin t�. +
a	sin t�² = �² + C´

�2 − 2 C³
� !#&t            (60) 

These are related by (Eq. (61)): 

�²§² = �Q + (²�² − 2(�¶ cos t = (.�§ᶦ�.;      (61) 

¤ᶦ
¤ = �/(,                                (62)	

that is equivalent to Eq. (62). This leads to the reciprocal 

point theorem (Equation (63)) illustrated in Fig. 2: 

The distances from an arbitrary point on a circle of radius 

“a” to an external point (b, 0) [the reciprocal point being 

(a²/b, 0)] are in a constant ratio, equal to a/b. This can be 

checked in particular for the points on the circle, that are 

closest (or farthest) from source: 

§ = (	 ∓ �;                              (63) 

§  = � ∓	�. (⁄                              (64) 

§  § = � (⁄⁄                              (65) 

These correspond to C (or D) in Figure 2, with upper (or 

lower) sign, both leading to the same result. 

7. Homogeneous Medium and 

Conducting or Insulating Walls 

Substituting the reciprocal point theorem (Eq. (62)) in 

[Equations (60, 61)], we obtain: 

H −	 H  = H                                   (66) 

H + H  = �	
. 
�⁄ �H                            (67) 

These specify the image J
I
 and virtual J

II 
currents in terms 

of the original current J, viz.: 

H  = H	=�
. − 
�� �
. + 
��⁄ ?                  (68) 

H   = H=�
�� �
. + 
��⁄ ?                      (69) 

where 
� and 
. are the magnetic permeabilities of the media 

on the two sides of the magnetic cylindrical interface. 

A line-current J has conjugate magnetic field: 

Iᴍ�Ƶ� = 6:;
.<� $#��Ƶ − (�,                  (70) 


 ∗ �Ƶ� = 6¸¹ᴍ
¸Ƶ = :;

.<� � �
Ƶ6ƾ�,                (71) 

where fm (z)=complex potential; 
∗�9� = !#��'����	������ !	� �$R. 

Also, we have: 

���9� = 6:
.<� » ��¼� $#��9 − ¼�R¼              (72) 


 ∗ �Ƶ� = :
.<� » ��¼� �9 − ¼�6�R¼              (73) 

As for the plane interface between two dielectrics, two 

particular cases are considered beside the degenerate case of 

identical magnetic permeabilities. In the degenerate case of 

identical media: 


� = 
.	;                                  (74) 

H  = 0;                                    (75) 

H   = H,                                    (76) 

when there is no image current or interface, and the virtual 

current coincides with the real current (Equation (76)), so 

that the magnetic field: 


�∗�S� ≡ 	
.∗�S� ≡ 
 ∗ �Ƶ� 

Which is that of a line-current in free space. 

One extreme case is the interior of a cylinder with zero 

magnetic permeability, (equation (77)), implying zero 

magnetic induction (equation (78)), though the magnetic 

field may be non-zero: 


. = 0;                                       (77) 

�.�9� = 0	 ≠ 	
.�9�;                            (78) 

H  = −H;                                     (79) 

H   = 2H.                                    (80) 

The image current is opposite in direction to the real or 

original current, corresponding to a conducting cylinder 

(Equation (52)); the virtual current is double the original 

current (Equation (80)), in agreement with the non-zero 

magnetic field. 

The opposite extreme case is when the magnetic 

permeability of the interior of the cylinder is infinite (Eq. 

(81)), so that the magnetic field is zero (Eq. (82)), though the 

magnetic induction may not be zero: 


. = ∞;                                    (81) 


2�9� = 0	 ≠ 	�2�9�;                            (82) 

H  = H;                                   (83) 
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H   = 0.                                  (84) 

The image current is identical to the real or original 

current, corresponding to an insulating cylinder (Eq. (52)). 

The virtual current vanishes, in agreement with the 

nonexistence of magnetic field there. 

8. Magnetic Force and Effective Dipole 

Moment in the Far-Field 

A line – current J at a distance b from the center of a 

cylindrical interface of radius “a” between two media with 

magnetic permeabilities, 
�, 
.,	 creates a magnetic field 

inside or outside corresponding to a virtual current or an 

image current. 

The far-field (Eq. (85)) in the first medium outside the 

cylinder corresponds to the original line-charge plus a dipole 

(Eq. (86)): 

|9|. ≫	(.                                 (85) 


�∗	~	 :;
.<�B + :U¿.<�B2                              (86) 

Y� ≡ H( ��[/�6C2 �2⁄ 0@�2/�@C2 �2⁄ 0
��[@�2� �                (87) 

Which has an effective dipole moment (87) that simplifies 

to (J. b) for line-charge at a large distance from the cylinder, 

where	�. ≪ (.. 

The result follows from (Equations (51, 52)): 

2L! H 
 ∗�S� −	1S + (S. + 0�(. S¶⁄ � = ÁH 
H Â Ã =�./�(9.�?=1 −	�./�(9�?Ä 

= �26	�[	
�2@�[ 	 � C2

�B2 + 0	 � C2
�B2	� + 0� C´

�2BÅ�� ;              (88) 

The above equation simplifies to (86) with dipole moment: 

Y� = H( �1 + ��. (.p � ��26	�[�2@�[�� ;              (89) 

0�(. 9¶p � ~	0	 �(. 9¶p � 0	 ��Q (Qp �             (90) 

Since the current lies outside the cylinder, b > a, the term 

(90) can be neglected together with 0	 �(. 9¶p �, so that the 

asymptotic condition (85) is sufficient to omit both. The 

complex conjugate magnetic force exerted by the line-current 

on the cylindrical magnetic interface is minus the force due 

to its images, and is specified by the second term on the 

right-hand side (RHS) of Eq. (51) evaluated at the line-

current Ƶ = (, Æ 9.: 
~I ∗= �:�[;

� � � :;ᶦ
.<��	Á C2 �p

�26C2Â = − ��₁;²
.<�²�Á C² �²p

�6C² �p Â ��₂6�₁�
��₂@�₁� = ~Iᴍ (91) 

Hence, the force exerted by the line-current on the 

cylindrical interface is attractive (or repulsive) if the force 

medium has larger (or smaller) magnetic permeability than 

the second medium, respectively. 

It vanishes for identical media, and in the particular case 


 = ∞ (or 
 = 0�,	it reduces to (50) with upper – (or lower+) 

sign, corresponding to an insulator (or conductor), 

respectively. 

9. Analogies and Differences Between 

Electrostatic and Magnetostatic Fields 

Table 1. Comparison of Electro-and Magnetostatics. 

Statics Electro-case Magneto-case 

In vacuo Electric field Magnetic induction 

Equation ∇	∧ 	-�­ ∇. ��­ = 0 
Type Irrotational Solenoidal 

Representation by -�­ = −∇Φ ��­ = ∇⋀Ψ 
Existence of Scalar potential Field function (2-D) 

Electric Charge density: q Current density:Ê­ 
Field Electric displacement Magnetic field 

Equation ∇.Ë��­ = Ì ∇	⋀
��­ = Ê­ !⁄  
Boundary Charge: Í Current: Î 
Normal =ËT? = Í =�T? = 0 
Tangential =-Ï? = 0 =
Ï? = Î !⁄  

Constitutive parameter Dielectric permittivity: Ð 
Magnetic 

permeability:
 

Constitutive equation Ë��­ = �-�­ ��­ = 

��­ 
Poisson equation ∇.Φ = −Ì ∈⁄  ∇.Ψ = −
� !⁄  
Insulator ∈= 0 
 = ∞ 
Charge/current Í = 0 Î = 0 

Field -�­ 	≠ 0 
��­ = 0 

Displacement/Induction Ë��­ = 0 ��­ 	≠ 0 
Conductor ∈= ∞ 
 = 0 
Charge/current Í ≠ 0 Î	 ≠ 0 

Field -�­ = 0 ��­ = 0 

Displacement/Induct-ion Ë��­ ≠ 0 
��­ ≠ 0 

Note: The comparison of electro-and magneto-statics concerns: (i) the 

electric field ( or magnetic induction) vectors and potential (or field) 

function: (ii) the electric charge (or current) and electric displacement (or 

magnetic field) vectors; (iii) the dielectric permittivity (or magnetic 

permeability) as the constitutive parameter in the Poisson equation; (iv) the 

extreme cases of an insulator; (v) the extreme cases of a conductor. 

For a summary of this section, refer to Table 1. 

The image current H   and virtual current H    can be 

rewritten respectively as: 

Hᶦ = ;
� [Ò₁@ [Ò₂� £ �

�₁ − �
�₂¥                          (92) 

Hᶦᶦ = ;
� [Ò₁@ [Ò₂� £ �

�₁ − �
�₂¥                         (93) 

The equations above are specified by the same equations 

as the image (or virtual) electric charges. 

We have: 

�
� ⇔ Ɛ;                               (94) 

∆²ɸₑ = 6×
Ɛ. ,                             (95) 

∆²Øᴍ = − 
� !p                                  (96) 

In (94), we are exchanging the dielectric permittivity by 

the inverse of the magnetic permeability. Poisson equations 

for the electric potential and for the magnetic field function 
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are given by Equations (95) and (96), respectively. The 

corresponding electrostatic and magneto-static analogies in 

the Poisson equations are: 

ɸₑ ↔ Øᴍ;                                        (97) 

Ì ↔ � !p ;                                       (98) 

�
Ɛ ↔ 
;                                          (99) 

�
� ↔ Ɛ.                                            (100) 

The virtual and image electric charges (or currents) are the 

same for the plane or cylindrical interfaces between distinct 

media; for both types of interface the dielectric permittivity 

(or magnetic permeability) is placed by the inverse magnetic 

permeability (or inverse dielectric permittivity) when 

exchanging magnetic for electric fields. 

By applying the required transformations, it follows that 

the magnetic (or electric) force exerted by a line-current (or 

charge) at a distance “a” from a plane interface (or distance b 

from some cylindrical interface with radius “a”), between 

media with magnetic permeabilities, 

µ1, µ2 �#%	¨ �ℎ	R �$�!�% !	"�%� �� Æities ε₁, ε₂), is given 

by: 

Iᴍ∗ = 6:�� �p �².<C �₁p J� �₁p 6� �₂p� �₁p @� �₂p O =  � �₁;²
.<�²C� ��₂6�₁

�₂@�₁�          (101) 

IÚᴍ∗ = 6Û² Ɛ₁p
.< Á �C �²p �

�6C² �p Â J� Ɛ₂p 6� Ɛ₂p� Ɛ₂p @� Ɛ₁p O = 6Û²
.<Ɛ₁ M /C �p 0²

�6C² �p N �Ɛ₁6Ɛ₂
Ɛ₁@Ɛ₂�. (102) 

Comparing the plane (or cylindrical) interface both in the 

electrostatic and magnetostatic cases, the curvature effect is 

the same in ratio between a line-monopole ( or charge) at a 

distance: (i) b from a plane interface; (ii) b from the center of 

a cylindrical interface of a radius “a”. 

That is, we have: 

 IÚÛ∗Ie∗ = − IÚÛIÛ = ÜIÛÝIÛÜ = ÜIÚ�I�Ü 
= − IÚ�I� = − IÚ�∗I�  

= �� (⁄ �.
�( − �. (⁄ �:	 12( 

= .C2
��26	C2� = .

=�2 C26�⁄ ?=K.                   (103) 

Hence, it can be seen that: 

(1) The curvature effect (of the cylindrical interface) 

increases the force, for K > 1 and for close monopole a < b < 

a.(3)
½
; 

(2) The curvature effect cancels for K=1 and for a 

monopole at a distance b=a. (3)
½
; 

(3) The curvature effect decreases the force, for b > a.(3)
½
 

causing a decay ~ 2a²/b² at large distance (s) b² >> a². 

An insulator does not support electric charges (or 

currents), so e=0 (or J=0), and the scalar potential (or stream 

function) in the Poisson equation can be finite and nonzero 

only if ∈= 0	���R	
 = ∞�	 which corresponds to zero 

electric displacement (or zero magnetic field), though the 

electric field (or the magnetic induction) may be nonzero. 

The reverse happens for a conductor that supports electric 

charges (or currents) so that for a perfect conductor ∈= ∞ 

(and 
 = 0), and the electric field -�� (and magnetic induction ��� ) are zero, though the electric displacement D (and 

magnetic field 
���) may be nonzero. 

Thus, the Faraday cage is formed in a conductor which 

conducts and excludes not only the electric field but also the 

magnetic induction. This leads to the phenomena of “skin 

effect”. In this phenomenon, the current along the central 

axis of a conductor (or metal wire) is small, while a large part 

of the current is concentrated along the periphery or 

boundaries of the conductor. At very high frequencies, these 

(power or information) currents or signals are emitted into 

space. Hence, this phenomenon makes possible the designs 

of antennas. 

10. Conclusions 

In conclusion, it can be correctly asserted that this paper 

has treated the following cases: current near conducting or 

insulating plane, cylinder in a uniform external magnetic 

field, line current near an insulating or conducting real, 

image and virtual electric currents, and the consideration of a 

reciprocal point as image on the cylinder. The reciprocal 

point theorem was stated and proved for a reciprocal point on 

the cylinder being considered. 

One extreme case is that the interior of the cylinder with 

zero magnetic permeability, implying zero magnetic 

induction, although the magnetic field may be nonzero. For 

this case, the image current is opposite to the real current, 

corresponding to a conducting cylinder, and the virtual 

current is double the real current. 

The opposite extreme case is when the magnetic 

permeability of the interior of the cylinder is infinite, so 

that the magnetic field is zero, though the magnetic 

induction may not be zero. In this case, the image and real 

currents are identical corresponding to an insulating 

cylinder. Also observed is the fact that a line-current J at a 

distance b from the center of a cylindrical interface of 

radius “a” between two media with magnetic permeabilities, 
�,  
.,  creates a magnetic field outside and inside 

corresponding to image and virtual currents respectively; 

the far-field in the first medium outside the cylinder 

corresponds to the original line-charge plus a dipole. The 

force exerted by the line-current on the cylindrical interface 

is attractive (or repulsive) if the first medium has larger (or 

smaller) magnetic permeability than the second medium. 

The exerted force vanishes for identical media, and in the 

particular case of 
. = ∞	�#%	
. = 0	�,  it reduces to 

Equation (50) with upper-(or lower+) sign, corresponding 

to an insulator (or conductor) repectively. Expressions have 

been obtained for a magnetic and electric forces exerted by 
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a line-current (or charge) at a distance “b” from a 

cylindrical interface with radius “a”, between media with 

magnetic permeabilities, 
�, 
.,	 and with dielectric 

permittivities (∈�, ∈.�. 

Comparing the plane interface with cylindrical interface, 

both in the electrostatic and magnetostatic cases, the 

curvature effect is the same in ratio between a line-monopole 

at a distance “b” from the centre of a cylindrical interface of 

radius “a”. 

The curvature effect due to the cylindrical interface 

increases, cancels, or decreases the values of the magnetic 

and electric forces, depending on the values of ratio K and of 

distance “b” with respect to the radius “a” of the cylindrical 

interface. The skin effect is mentioned, which is applied in 

antenna design principles. 
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