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Abstract: Magnetorheological Finishing (MRF) is a new optical surface processing method, which has the advantages that 

good polishing effect, no subsurface damage, and suitable for complex surface processing. However, the interaction mechanism 

between the MRF pad and the workpiece is very complicated, so that the existing MRF material removal theoretical model is not 

accurate enough to establish the relationship between polishing parameters and material removal. In order to improve the 

processing efficiency and explore the material removal mechanism, a cluster magnetorheological finishing (CMRF) with 

dynamic magnetic fields method was proposed. Studying CMRF with dynamic magnetic fields material removal model is 

helpful to explain the removal mechanism more deeply, and improve the processing efficiency. In this study, the CMRF method 

was used to conduct a multi-factor orthogonal test on 2-inch single crystal silicon wafers. Based on the empirical Preston 

equation, the relationship between the machining gap and the polishing pressure was explained. Orthogonal experiments were 

done for a series of speeds, and obtaining the order of the influence of various factors on the average surface roughness Ra of the 

workpiece was: workpiece rotation speed > polishing disk speed > magnetic poles rotation speed > oscillating speed; the material 

removal rate (MRR) was: polishing disk speed > workpiece rotation speed > magnetic poles rotation speed > oscillating speed. 

Then combining with the orthogonal experimental data, and taking the surface roughness Ra and MRR as evaluation criteria, 

using Adam (Adaptive momentum) optimization algorithm to build a prediction model of Ra and MRR for polishing single 

crystal silicon by CMRF with dynamic magnetic fields based on BP neural network. For the prediction result, Ra of the 

maximum error was 7.05%, the minimum was 0.31%; MRR of the maximum error was 10.22%, the minimum was 1.32%. 

Therefore, the feasibility of this model for predicting the results of CMRF was verified, and it laid a good foundation for the 

development of CMRF technology and its industrial application. 
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1. Introduction 

Magnetorheological Finishing (MRF) is a new optical 

surface processing method, which uses MRF fluid to 

generate magnetorheological effects under the action of 

magnetic fields to confine and clamp abrasives, thereby the 

abrasives change from a free state to a semi-fixed state [1-2]. 

MRF has the advantages that traditional polishing does not 

have, such as good polishing effect, no subsurface damage, 

and suitable for complex surface processing. MRF has been 

proven to be an efficient, ultra-smooth, and low-damage 

deterministic new optical surface processing technology [3-5]. 

However, in the classic MRF, the workpiece and the 

"polished ribbon" are in spot local contact, and the workpiece 

needs to be processed by trajectory scanning, which leads to 

low processing efficiency [6]. In order to improve the 

processing efficiency, a cluster magnetorheological finishing 

(CMRF) method in which small-sized magnetic poles are 
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combined according to the cluster principle to form a 

large-area polishing pad is proposed. The method realizes the 

area contact between the polishing pad and the workpiece 

surface, so it can improve the processing efficiency and 

obtain nanoscale surface roughness [7]. On this basis, the 

static magnetic fields are transformed into dynamic magnetic 

fields by means of multi-poles eccentric rotation, which 

realizes real-time trimming of the CMRF pad. It is suitable 

for polishing single crystal silicon carbide, single crystal 

silicon, strontium titanate, indium phosphide and other 

semiconductor substrates, and can obtain surface roughness 

of nanometer or even angstrom level [8-10]. 

To improve the accuracy of CMRF, it is necessary to deeply 

understand its material removal mechanism, which is related to 

the choice of polishing parameters and the environment. In 

recent years, a variety of methods have emerged to study the 

material removal mechanism of MRF, including empirical 

models, finite element simulations, molecular dynamics, fluid 

mechanics models [11], etc. GROOTE et al. [12-13] polished 

glass materials with nano-diamond abrasives, and concluded 

that the material removal rate (MRR) was linearly related to the 

physical and chemical properties of the workpiece, the size and 

concentration of abrasives, and the bonding strength of atomic 

bonds. SHOREY [14] based on the Preston equation and fluid 

lubrication theory found that the material removal efficiency of 

MRF was proportional to the shear stress of the workpiece, 

and the strength of the magnetic fields determined the yield 

stress. Therefore, the shape of the polished area was positively 

related to the size of the magnetic field. Shi et al. [15] 

calculated the numerical distribution of shear force and 

pressure in the polishing area through simulation, and fitted the 

surface of the influence factor of shear force and pressure on 

material removal, established a three-dimensional 

mathematical model of MRF material removal. The BK7 flat 

mirror with a diameter of 100 mm was tested and verified, the 

deviation of the peak removal rate was 3.36%, and the 

deviation of the volume removal rate was 8.83%. 

However, the interaction mechanism between the CMRF 

pad and the workpiece is very complicated, so that the existing 

CMRF material removal theoretical model is not accurate 

enough to establish the relationship between polishing 

parameters and material removal. The development of BP 

(Back-propagation) neural network provides a precise method 

for exploring the material removal mechanism of CMRF. The 

neural network constructs a network model from experimental 

data through an adaptive learning method, thereby establishing 

the relationship between polishing parameters and material 

removal. Liu et al. [16] proposed an uneven surface polishing 

algorithm for industrial robots based on neural networks and 

genetic algorithms, and verified the effectiveness of the 

algorithm for predicting experimental results through polishing 

experiments on uneven surfaces. Guo et al. [17] established an 

intelligent decision-making system for grinding process 

through the improved BP neural network. Compared with the 

non-optimized BP neural network, the optimized neural 

network had significantly improved training accuracy and 

prediction accuracy. Yan et al. [18] established an abrasive 

water jet polishing BP neural network model, and carried out 

polishing experiments under the predicted incident angle and 

jet pressure. The minimum relative error between the actual 

value and the predicted value of the surface roughness of the 

aluminum alloy wheel was 0.92%, the maximum was 2.89%. 

In this study, the CMRF with dynamic magnetic fields 

method was used to conduct a multi-factor orthogonal test on 

2-inch single crystal silicon wafers. Based on the empirical 

Preston equation, the relationship between the machining gap 

and the polishing pressure in the CMRF with dynamic 

magnetic fields was explained. Combining with the orthogonal 

experimental data, and taking the surface roughness Ra and 

MRR as evaluation criteria, using Adam (Adaptive momentum) 

optimization algorithm to build a prediction model of material 

removal for polishing single crystal silicon by CMRF with 

dynamic magnetic fields based on BP neural network. The 

feasibility of this model for predicting the results of CMRF 

was verified, and it laid a good foundation for the development 

of CMRF technology and its industrial application. 

2. Principles and Methods 

2.1. Dynamic Magnetic Fields CMRF Processing Mechanism 

 

Figure 1. Diagram of CMRF with dynamic magnetic fields. 
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Figure 1 shows the principle of dynamic magnetic fields 

CMRF. The magnetic poles were embedded in the polishing 

disk according to the cluster principle. The lower end of the 

magnetic poles was fixed on the eccentric shaft through an 

eccentric sleeve, the eccentric shaft was installed on the 

eccentric disk, and the lower end of the oscillating disk was 

installed on the polishing disk spindle. The magnetic poles 

and the eccentric shaft move eccentrically in the same 

direction. When the polishing disk spindle rotated, it would 

drive the eccentric disk and the eccentric shaft to move 

eccentrically in opposite directions. Since multiple magnetic 

poles had synchronous relative movement to the polishing 

disk, dynamic magnetic fields were formed on the surface of 

the polishing disk. When CMRF fluid was poured into the 

polishing disk, the magnetic particles were distributed along 

the lines of magnetic force to form a plurality of flexible 

polishing pads. Under the action of dynamic magnetic fields, 

the magnetic field lines changed in real time, and the CMRF 

fluid can form a new flexible polishing pad in real time. That 

is, when the polishing pad contacted with the workpiece for 

the first time, the polishing pad will be flattening, but the 

dynamic magnetic fields will restore the flattened polishing 

pad to its original shape quickly. So, the polishing pressure 

can be maintained constant, and the abrasives can be updated 

and reorganized continuously under the action of the 

dynamic magnetic field [19]. 

Figure 2 shows the experimental equipment of the dynamic 

magnetic fields CMRF. Multiple cylindrical permanent 

magnets (diameter 25 mm × height 40 mm) were placed under 

the polishing disk. The magnetic poles were driven by the 

dynamic magnetic field generator on the polishing disk surface, 

the dynamic magnetic fields were formed on the surface. The 

magnetic particles in the polishing liquid gathered along the 

direction of the magnetic field lines, thereby forming a 

dynamic flexible polishing pad on the polishing disk surface. 

The three single crystal silicon substrates were evenly attached 

to the lower surface of the workpiece spindle with paraffin. 

The workpiece spindle was fastened to the machine tool 

spindle through bolts, and the servo motion of the CNC 

milling machine was used. The synchronous rotation and 

machining gap were adjusted by controlling the Z axis. The 

workpiece can oscillate and translate in the X or Y direction, 

and the oscillating displacement and oscillating speed can be 

controlled by CNC programming. 

 

Figure 2. Experimental apparatus of CMRF with dynamic magnetic fields. 

2.2. Experimental Conditions 

The single crystal silicon substrates with a diameter of 2 

inches (φ 50.8 mm) were used as the experimental material, 

and its original thickness was 450 µm, roughness Ra was 0.2 

µm. In the polishing process, the machining time, machining 

gap, magnetic poles eccentricity, oscillating mode, oscillating 

displacement and speed have a greater impact on the polishing 

effect and processing uniformity. The speed includes 

oscillating speed, magnetic poles rotation speed, polishing 

disk rotation speed, and workpiece rotation speed. These four 

parameters are related to each other, so orthogonal 

experiments were carried out for the four speeds. The process 

parameters required for CMRF are listed in Table 1. The 

CMRF fluid used in the experiment is made up of deionized 

water, carbonyl iron powder, abrasive, glycerin, etc. in a 

certain proportion. 

Table 1. Process parameters and factor levels. 

Process parameters Level 

Machining time (h) 4 

Machining gap (mm) 1.0 

Magnetic poles eccentricity (mm) 6 

Oscillating method Y 

Oscillating displacement (mm) 40 

A: Oscillating speed (mm/min) 200,400,600 

B: Polishing disk speed (r/min) 30,45,60 

C: Magnetic poles rotation speed (r/min) 30,50,70 

D: Workpiece rotation speed (r/min) 250,350,450 

2.3. Evaluation Method of Machined Surface 

Taking 16 points equally divided along the surface of the single 

crystal silicon wafers as measurement points, as shown in Figure 3. 

Using an OLS4000 laser confocal microscope observes the 

micro-topography of the workpiece surface, and using Contour 

GT-X white light interferometer measures its surface roughness 
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and observes its surface morphology. The measured average value 

was used as the surface average roughness of single crystal silicon. 

At the same time, a dial indicator (precision 0.1µm) was measured 

the thickness change of single crystal silicon before and after 

processing, and the difference as the removal amount of the 

sample. The average removal amount of each point was taken as 

the average removal amount of the processed sample. The ratio of 

the average removal amount to the time as the average material 

removal rate. 

 

Figure 3. Distribution of sample measurement points. 

2.4. Experimental Results and Analysis 

To determine the influence law of four interrelated speeds 

on Ra and MRR in the process of CMRF with dynamic 

magnetic fields, and obtain the optimal parameters 

combination on this basis. Set the process parameters 

according to Table 1, carried out the L9(3
4
) orthogonal test 

with the four factors of oscillating speed, polishing disk 

speed, magnetic poles rotation speed, and workpiece rotation 

speed, and according to the method described in section 2.3 

to detect the processing quality of single crystal silicon. The 

experimental scheme and results are shown in Table 2. From 

the range RRa and RMRR in Table 2, it can be seen that the 

order of the influence of various factors on the average 

surface roughness Ra of the workpiece is: workpiece rotation 

speed > polishing disk speed > magnetic poles rotation 

speed > oscillating speed; the MRR’s is: polishing disk speed > 

workpiece rotation speed > magnetic poles rotation speed > 

oscillating speed. It can be seen that the four speeds have 

important effects on Ra and MRR, so these four factors were 

used as input parameters of CMRF with dynamic magnetic 

fields material removal model. 

Table 2. The experimental scheme and results. 

Experimental scheme Experimental results 

Test number 
Oscillating 

speed/A 

Polishing disk 

speed/B 

Magnetic poles 

speed/C 

Workpiece 

speed/D 
Ra (nm) MRR (µm/min) 

1 200 30 30 250 9.872 0.0225 

2 200 45 50 350 6.485 0.0536 

3 200 60 70 450 5.926 0.0512 
4 400 30 50 450 8.502 0.0374 

5 400 45 70 250 6.937 0.0482 

6 400 60 30 350 6.374 0.0508 
7 600 30 70 350 6.728 0.0479 

8 600 45 30 450 7.537 0.0453 

9 600 60 50 250 8.224 0.0472 

the range of 

Ra 

���������� 7.428 8.367 7.928 8.344 

 

���������� 7.271 6.986 7.737 6.529 

���������� 7.496 6.841 6.530 7.322 

RRa 0.225 1.526 1.398 1.815 

the range of 

MRR 

������������� 0.042 0.036 0.040 0.039 

������������� 0.045 0.049 0.046 0.051 

������������� 0.047 0.050 0.049 0.045 

RMRR 0.005 0.014 0.009 0.012 

 

3. Establishment of CMRF Material 

Removal Model 

3.1. Theoretical Material Removal Rate Model 

Theoretical material removal model is an important factor 

for establishing a CMRF neural network model. CMRF is 

based on the rheological effect of MRF liquid for polishing. 

When external magnetic fields are applied, the viscosity of 

the MRF increases rapidly, and the shear stress also increases. 

The magnetic particles are magnetized gradually, which 

causing the magnetic particles to move along the direction of 

the magnetic force to form magnetic chains with a certain 

shear strength, and the abrasives are wrapped by the 

magnetic chains. The stacking and overlapping of magnetic 

chain strings becomes Bingham viscoelastic polishing pads 

with a certain shear strength [7]. When the lower surface of 

the workpiece and the upper surface of the polishing disc are 

in a reasonable machining gap and performing relative 

movement, the flexible polishing pad will form a certain 

pressure and shear speed on the surface of the workpiece, and 

then under the soft sliding action of the semi-fixed abrasive, 

the surface material of the workpiece is removed. The 

material removal model in this study is based on the Preston 

empirical equation, which can be further described as: 

	

 � ��� � � � ���           (1) 

Where, K is the Preston coefficient, �  is the 

hydrodynamic pressure, �  is the magnetization pressure 

generated by the magnetorheological effect, � is the liquid 

buoyancy, and V is the relative velocity of the MRF liquid 
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and the surface of the workpiece in the polishing area. 

It can be seen from formula (1) that under the condition of 

constant process conditions, only constant CMRF pressure 

can remove material of the workpiece continuously and 

stably. Under the condition that the surface of the workpiece 

is parallel to the surface of the polishing disc, theoretically 

the hydrodynamic pressure � on the lower surface of the 

workpiece is negligible generally; the liquid buoyancy � is 

much smaller than �, and can also be ignored. The pressure 

�  generated by the magnetorheological effect generally 

includes magneto strictive pressure and magnetizing pressure, 

but because the MRF liquid is incompressible, the magneto 

strictive pressure caused by volume change is zero. Therefore, 

it can be considered that the dynamic magnetic field 

polishing pressure is mainly the pressure � that generated 

by the magnetorheological effect. 

According to the research results of Zhang [20], the MRF 

pressure produced by the magnetorheological effect of 

spherical magnetic particles under the action of external 

magnetic fields is: 

� � ����������

�����
� ����

�             (2) 

� � ∑ !"#$�%&'(
#)�             (3) 

Among them, "# �
�+, -./�%&0�

1��#�����
, 3# � �#��

��
4 

Where, 5 is a ratio of the magnetic particles occupied in 

the magnetorheological fluid, 6�  is the permeability of 

vacuum, 6 is the permeability of the magnetic particles, H is 

the magnetic field strength of the external magnetic field, Z is 

the distance from the magnetic poles end face to the 

workpiece surface, 7 is the total length of two magnetic 

poles placed side by side, e is the width of the air gap formed 

by placing the soft magnetic material on the upper surface of 

the two magnetic poles side by side, and 8� is the magnetic 

flux density passing through the air gap. 

It can be seen from formula (2) that the pressure � is 

positively related to the magnetic field strength H of the 

external magnetic fields on the surface of the workpiece. 

When the pressure �  increases, on the one hand, the 

magnetic particles in the MRF fluid increase the holding 

force of the abrasive particles, on the other hand, the normal 

pressure of the abrasive in direct contact with the workpiece 

also increases, so as to achieve better MRR. 

It can be seen from formula (3) that the absolute value of 

the applied magnetic field strength H gradually increases 

with the reduction of the machining gap Z, thereby increasing 

the pressure �. Thus, when the machining gap Z is constant, 

the magnetic field strength H is a constant value, that is, the 

polishing pressure � remains unchanged. In this case, the 

MRR of CMRF with dynamic magnetic poles is mainly 

affected by the relative speed V. Taking into account the 

changes of four speeds involved in CMRF process, in order 

to explore the influence of speed changes on Ra and MRR, an 

orthogonal experiment with oscillating speed, polishing disk 

speed, magnetic poles rotation speed, and workpiece rotation 

speed as variables was designed. Taking the surface 

roughness Ra and MRR as evaluation criteria, a material 

removal model based on BP neural network was established. 

3.2. Model 

Through training experimental data under different process 

parameters, the Ra and MRR prediction model for polishing 

single crystal silicon by CMRF with dynamic magnetic fields 

based on BP neural network was established, which provides a 

basis for realizing the removal control of polishing single 

crystal silicon material. According to the results of the 

orthogonal experiment, taking the oscillating speed, polishing 

disk speed, magnetic poles rotation speed, and workpiece 

rotation speed as input parameters, and the surface roughness 

Ra and MRR as output parameters, so the number of input 

layer nodes is 4, and the output layer nodes is 2. The hidden 

layer nodes are determined by formula (4): 

9 � √; � < � 7                (4) 

Where, m is hidden layer nodes, n is the input layer nodes, l 

is the output layer nodes, and α is a constant between 1-10. So, 

the range of m is range from 4 to13. 

Although three layers BP network can map any 

n-dimensional to m-dimensional [21], after testing found that 

a three-layer network with hidden layer nodes of 13 requires 

tens of thousands of iterations to meet the requirements. 

Comparing the performance of each hidden layer nodes, 

finding four-layer network structure can achieve predicted 

results quickly, and finally determined that hidden layer nodes 

is 10. Therefore, the network structure model for the 4 × 3 × 7 

× 2, as shown in Figure 4. 

 

Figure 4. BP neural network structure. 

In general, two classification problems, the hidden layer 

uses the tanh () function (5): 

=7;>�?� � -./@ �A�

BC-@ �A�
� 0D�0ED

0D�0ED              (5) 

The output layer uses the sigmod () function (6) [21]: 

FGH9I��?� � �

��0ED               (6) 

In practical applications, the Adam method is better than 
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other adaptive learning algorithms. Its convergence speed is 

faster, the learning effect is more effective, and it can correct 

the problems existing in other optimization techniques, such 

as the disappearance of the learning rate, the slow 

convergence or the parameter update with high variance leads 

to the loss function to fluctuate greatly [22]. Therefore, the 

input layer activation function used the tanh () function, the 

hidden layer activation function used the tanh () function, the 

output layer activation function used the sigmod () function, 

and the back-propagation function used the Adam 

optimization algorithm. Maximum number of iterations was 

set to 20000, initial learning rate was 0.001. Stopping the 

calculation, when the error between the fitted value of the 

objective function and the true value was less than 0.0001. 

Because the experimental data was less, all nine sets of data 

were used as training samples to train the network model, and 

two sets of data were selected randomly as test samples to test 

the network model. During the training period, the BP neural 

network corrected the weights continuously between the 

nodes through its independent learning ability, so that the 

model output results were approaching the sample data 

constantly, and stopping working when the training goal or the 

training numbers was reached. Through network calculation, 

when the number of iterations was 4000-7000, the required 

accuracy was reached. The mean square error (MSE) curve is 

shown in Figure 5, in the initial stage of training, the MSE 

value dropped significantly, and after 1000 iterations, the 

MSE value further dropped and gradually stabilized. 

 

Figure 5. MSE changes during BP neural network training. 

3.3. Model Analysis 

Figure 6 shows the simulation results of the established 

network model are almost completely consistent with the 

measured results, and the fitting errors for Ra and MRR are 

both within 1%, which indicates that the model has a high 

degree of fitting, and can describe the relationship between 

the four process parameters and Ra and MRR accurately. 

In order to test the performance of the trained network model, 

the process parameters were input into the neural network, and 

then the error between the network output value and the 

experimental value was compared to determine whether the 

error meets the requirements. Table 3 lists the comparison 

between the measured values and predicted values of the BP 

neural network. For the prediction result, Ra of the maximum 

error is 7.05%, the minimum is 0.31%; MRR of the maximum 

error is 10.22%, the minimum is 1.32%. The large errors in the 

prediction results are mainly due to the insufficient number of 

samples, which leads to fluctuations in the prediction results 

each time. If enough samples are used, the error of the 

prediction model can be further reduced. Therefore, it can be 

considered that within a certain error range, the established BP 

neural network model can predict effectively the Ra and MRR 

of the CMRF with dynamic magnetic fields. 

 

Figure 6. Comparison of simulation results and measured results. 

It should be noted that the established BP neural network 

model is not a clear functional relationship, only a network 

structure. The Ra and MRR prediction models trained by this 

BP network structure overcome the problem, that traditional 

theoretical models cannot describe accurately the complex 

nonlinear mapping relationship between process parameters 

and experimental targets, and provide new ideas for 

optimizing the polishing process. 

Table 3. Comparison between measured values and predicted values. 

 

Measured value Predictive value 

Ra MRR Ra Error MRR Error 

1 9.872 0.0225 9.3218 5.57% 0.0248 10.22% 

2 6.485 0.0536 6.0293 7.03% 0.0523 2.43% 

3 5.926 0.0512 5.9444 0.31% 0.0521 1.76% 

4 8.502 0.0374 8.2112 3.42% 0.0347 7.22% 

5 6.937 0.0482 6.8308 1.53% 0.0493 2.28% 

6 6.374 0.0508 6.0612 4.91% 0.0515 1.38% 

7 6.728 0.0479 6.2536 7.05% 0.0492 2.71% 

8 7.537 0.0453 7.3955 1.88% 0.0459 1.32% 

9 8.224 0.0472 8.3582 1.63% 0.0485 2.75% 

4. Conclusion 

As a new type of optical surface processing method, the 

CMRF with dynamic magnetic fields has great research 

significance for semiconductor surface polishing. Therefore, 

studying its material removal model is helpful to explain the 

removal mechanism more deeply, and improve the processing 

efficiency. In this study, the CMRF with dynamic magnetic fields 

method was used to conduct a multi-factor orthogonal test on 

2-inch single crystal silicon wafers. Based on the empirical 

Preston equation, the relationship between the machining gap 

and the polishing pressure in the CMRF with dynamic magnetic 
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fields was explained. Orthogonal experiments were done for a 

series of speeds, obtaining the order of the influence of various 

factors on the average surface roughness Ra of the workpiece 

was: workpiece rotation speed > polishing disk speed > magnetic 

poles rotation speed > oscillating speed; the MRR was: polishing 

disk speed > workpiece rotation speed > magnetic poles rotation 

speed > oscillating speed. Combining with the orthogonal 

experimental data, and taking the Ra and MRR as evaluation 

criteria, using Adam optimization algorithm to build a prediction 

model of material removal for polishing single crystal silicon by 

CMRF with dynamic magnetic fields based on BP neural 

network. For the prediction result, Ra of the maximum error was 

7.05%, the minimum was 0.31%; MRR of the maximum error 

was 10.22%, the minimum was 1.32%. Therefore, the feasibility 

of this model for predicting the results of CMRF was verified, 

and it laid a good foundation for the development of CMRF 

technology and its industrial application. 
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